Ключ к долголетию: почему высокий уровень образования снижает риск преждевременной смерти.
В Украине будет действовать система профильного образования для старших классов. Это позволит ученикам самостоятельно выбирать предметы для изучения.
Противоречие 3
. Между признаваемой в практике дошкольного воспитания необходимостью организации систематической математической подготовки, направленной на развитие математических способностей ребенка, и неразработанностью прикладных аспектов этого процесса, т.е. методики математического развития ребенка.
Противоречие 4.
Между требованием школьных программ обучения математике к уровню математического развития ребенка и результатами этого развития, наблюдаемыми в практике дошкольной математической подготовки.
Противоречие 5
. Между необходимостью осуществления педагогом непрерывного математического развития ребенка дошкольного и младшего школьного возраста и несогласованностью содержания и методов обучения математике ребенка младшего возраста в существующих дошкольных и школьных программах.
Противоречие 6
. Между основополагающим постулатом теории развивающего обучения, полагающим суть личности ребенка не как совокупность изначально заданных и неизменных индивидуальных особенностей, а как складывающуюся в образовательном процессе «саморазвивающуюся систему», поддающуюся управляемым процессам формирования и развития, посредством применения технологий развивающего обучения и отсутствием таковых технологий в дошкольном математическом образовании.
Эта группа противоречий обусловила проблему
, разрешению которой посвящено данное исследование.
Объект исследования– процесс непрерывного математического развития детей дошкольного и младшего школьного возраста.
Предмет исследования
– методическое обеспечение процесса непрерывного математического развития детей в системе дошкольного и начального школьного образования.
Цель исследования
состоит в разработке и обосновании концепции математического развития ребенка дошкольного и младшего школьного возраста, позволяющей обеспечить осуществление непрерывности математического образования на дошкольной и начальной школьной ступени, его преемственности и повышение качества математической подготовки ребенка дошкольного и младшего школьного возраста, а также разработке и апробации ее прикладного аспекта в форме образовательной технологии (методы, средства, формы).
Генеральная гипотеза.
Если
целью математического образования ребенка в системе дошкольного и начального школьного обучения сделать не накопление математических знаний и умений, а математическое развитие ребенка, под которым понимается целенаправленная методическая работа над формированием и развитием основных свойств и качеств математического мышления у каждого ребенка до максимально возможного для него уровня, то
это приведет к реальному осуществлению непрерывности математического образования, его преемственности и повышению качества математической подготовки ребенка дошкольного и младшего школьного возраста.
Под математическим развитием ребенка
младшего возраста понимается целенаправленное и методически организованное формирование и развитие совокупности взаимосвязанных основных (базовых) свойств и качеств математического стиля мышления ребенка и его способностей к математическому познанию действительности. Такое развитие задает главную целевую установку обучения математике детей младшего возраста. Теоретические основы такой концепции позволяют построить эффективную методическую систему (включая технологию) непрерывного математического развития ребенка младшего возраста (дошкольника и младшего школьника), предоставляющую каждому ребенку условия для индивидуального продвижения в математическом содержании (траектории). Последовательная реализация концептуальной целевой установки на базе разработанной методики будет способствовать 1) практическому созданию единой системы преемственного дошкольного и начального обучения математике и 2) достижению оптимально возможного для ребенка, соответствующего возрастному этапу уровня его математического развития.
Еще по теме:
Академическая активность в условиях олимпиадного
движения
Олимпиадное движение в современном социальном образовании выполняет ряд специфических, присущих только ему функций. Это функции: переориентации образования на запросы личности, его индивидуализацию, превращение в средство жизненного и профессионального самоопределения, самореализации; формирование ...
Принципы создания универсального образовательного пространства и
национальные особенности их реализации
18 сентября 1988 года в Болонье на съезде европейских ректоров, созванного по случаю 900-летия Болонского университета была подписана «Всеобщая хартия университетов»(Magna Charta Unifersitatum). В Хартии подчёркнута особая роль университетов в современном мире как центров культуры, знания и исследо ...
Методологические, дидактические и психологические основания проблемного
обучения
Концепция проблемного обучения имеет более чем полувековую историю. Оно возрождалось в разных формах и тридцать, и двадцать лет назад, иногда и в директивном порядке. Был период увлечения проблемным методом преподавания, когда учебный материал преподносится в виде серии проблем, разбор которых пров ...
Искусственный интеллект ворвался в жизнь педагогов с открытием доступа к сервису ChatGPT в ноябре 2022 года. Но за это время было столько дискуссий, статей, сообщений, круглых столов, семинаров и мастер-классов о ИИ, что кажется, он с нами уже давно.