Ключ к долголетию: почему высокий уровень образования снижает риск преждевременной смерти.
В Украине будет действовать система профильного образования для старших классов. Это позволит ученикам самостоятельно выбирать предметы для изучения.
Величина - неопределяемое понятие. Под величинами понимают свойства объектов, которые допускают сравнение (<, >, =) и которым можно поставить в соответствие некоторую количественную характеристику.
Форма, цвет, материал - не являются величинами, т.к. они не допускают сравнения (например, нельзя сказать «более деревянный» или «менее деревянный»). Длина отрезка, площадь фигуры, масса тела - величины.
Классификация величин.
Величины бывают:
1) Скалярные - определяются только числовым значением (длина отрезка, масса тела, площадь фигуры).
2) Векторные - определяются числовым значением и направлением (скорость, сила, ускорение).
3) Аддитивные и неаддитивные
Аддитивные - допускают сложение (длина отрезка, площадь фигуры).
Рис.1
Длина отрезка а равна сумме длин отрезков с и b (рис.1).
Неаддитивные - не допускают сложения (плотность, температура) (рис. 2).
Рис. 2
4) Однородные и неоднородные.
Однородные - выражают одно и тоже свойство объектов (длина отрезка и периметр треугольника).
Неоднородные - выражают различные свойства объектов (периметр треугольника и площадь треугольника).
Аксиомы положительных скалярных величин
Аксиома 1: Любые две положительные скалярные величины можно сравнить. Если a и b - однородные положительные скалярные величины, то для них справедливо одно из трех утверждений: 1) a=b или 2) a<b или 3) a>b.
Аксиома 2: Любые однородные положительные скалярные величины можно складывать. В результате получится величина того же рода.
Аксиома 3: Из большей положительной скалярной величины можно вычесть меньшую положительную скалярную величину, ей однородную. В результате получится величина того же рода.
Аксиома 4: Любую положительную скалярную величину можно умножить на положительное действительное число. В результате получится величина того же рода.
Аксиома 5: Любую положительную скалярную величину можно разделить на величину, ей однородную. В результате получится положительное действительное число.
Положительной скалярной величине можно поставить в соответствие количественную характеристику - численное значение (меру) при выбранной единице измерения. Отыскать численное значение величины возможно в результате ее измерения.
Измерение положительных скалярных величин - это процесс установления отображения из множества положительных скалярных величин V+ во множество положительных действительных чисел R+.
В результате такого отображения каждой положительной скалярной величине ставится в соответствие единственное положительное действительное число, называемое численным значением величины или мерой.
Процесс измерения величин строится по-разному для каждого множества измеряемых объектов, но при этом имеются следующие общие моменты:
1. В каждом множестве измеряемых объектов выбирается один и называется единичным.
2. Величине единичного объекта ставится в соответствие положительное действительное число 1.
3. Величина измеряемого объекта делится на величину единичного объекта. В результате (по аксиоме 5 положительных скалярных величин) получится положительное действительное число – численное значение (мера) величины измеряемого объекта при выбранной единице измерения.
Символически: mе(a) - мера величины а при единице измерения е.
В процессе измерения используются следующие свойства меры:1. mе(e) = 1 - свойство меры единичного объекта.2. Равным величинам соответствуют равные положительные действительные числа: (а=b)=>(mе(a)=mе(b)) - свойство инвариантности меры.3. (с=a Å b)=>(mе(c)=mе(a)+mе(b)) - свойство аддитивности меры.4. mе(а) = mе1(а) × mе(е1) - свойство мультипликативности меры (позволяет переходить от одних единиц измерения к другим) .
Еще по теме:
Тематика родительского собрания и его назначение
Выбор вида и формы родительского собрания зависит от его тематики и поставленных целей. Среди видов можно выделить: организационные (посвященные, например, предстоящей дальней экскурсии детей или подготовке к многодневному походу), собрания по плану психолого-педагогического просвещения (например, ...
Обращение классного руководителя к родителям
Давайте зададим себе вопросы. Чего хотят и о чём мечтают родители? К чему стремятся педагоги? Какими они хотят видеть детей? Каждый из нас стремится к тому, чтобы жизнь детей сложилась благополучно и счастливо. Но счастье – не просто удача, выигрышный билет в лотерее. Оно во многом зависит от того, ...
Мудрости семейного воспитания
1. Если ты поймал сыну рыбу, ты накормил его на сегодня. Если ты научил сына ловить рыбу, ты накормил его на всю жизнь. Восточная мудрость. 2. Не стреляйте в своё будущее из пистолета, будущее выстрелит в вас из пушки. Народная мудрость. 3. Есть только одна подлинная ценность – это связь человека с ...
Искусственный интеллект ворвался в жизнь педагогов с открытием доступа к сервису ChatGPT в ноябре 2022 года. Но за это время было столько дискуссий, статей, сообщений, круглых столов, семинаров и мастер-классов о ИИ, что кажется, он с нами уже давно.