Решение задач выделением 3-х этапов математического моделирования

Образование и педагогика » Методика обучения решению текстовых задач алгебраическим способом » Решение задач выделением 3-х этапов математического моделирования

Страница 1

Математики отличаются друг от друга тем, что говорят друг с другом и пишут на особом «математическом языке». Используя математический язык можно составлять математические модели реальных ситуации. В процессе решения задачи выделяются три этапа математического моделирования: 1) составление математической модели, 2) работа с математической моделью, 3) ответ на вопрос задачи. Рассмотрим некоторые примеры, в которых рассматриваются этапы математического моделирования.

Задача.

Турист шел 2 ч пешком из пункта А в пункт В, затем в В он сел на катер, скорость которого в 4 раза больше скорости туриста как пешехода, и ехал на катере 1,5 ч до пункта С. В С он сел на автобус, скорость которого в 2 раза больше скорости катера, и ехал на нем 2 ч до пункта D. С какой скоростью ехал турист на автобусе если известно, что весь его путь от А до D составил 120 км?

Решение.

Первый этап. Составление математической модели.

пусть х км/ч – скорость пешехода. За 2 ч он пройдет 2х км.

Из условия следует, что скорость катера 4х км/ч. За 1,5 ч катер пройдет путь 4х×1,5 км, т.е. 6х км.

Из условия следует, что скорость автобуса равна 2×4х км/ч, 8х км/ч. За 2 ч автобус пройдет 8х×2 км, т.е. 16х км.

Весь путь от А до D равен: 2х+6х+16х, что составляет, по условию, 120 км. Таким образом, 2х+6х+16х=120.

Это математическая модель задачи.

Второй этап. Работа с составленной моделью.

Сложив одночлены 2х, 6х, 16х, получим 24х. Значит, 24х=120, откуда находим х=5.

Третий этап. Ответ на вопрос задачи.

За х мы приняли скорость пешехода, она равна 5 км/ч. Скорость катера в 4 раза больше, т.е. 20 км/ч, а скорость автобуса еще в 2 раза больше, т.е. 40 км/ч.

Ответ: скорость автобуса 40 км/ч.

Задача.

Пункты А, В и С расположены на шоссе друг на другом. Расстояние между А и В равно 16 км. Из В по направлению к С вышел пешеход. Через 2 ч после этого из А по направлению к С выехал велосипедист, скорость которого на 6 км/ч больше скорости пешехода. Через 4 ч после своего выезда велосипедист догнал пешехода в пункте С. Чему равно расстояние от В до С?

Решение.

Первый этап. Составление математической модели.

Пусть х км/ч – скорость пешехода, тогда (х+6) км/ч – скорость велосипедиста.

Расстояние от А до С велосипедист проехал за 4 ч, значит, это расстояние выражается формулой 4(х+6) км; иными словами, АС=4(х+6).

Расстояние от В до С пешеход прошел за 6 ч (ведь до выезда велосипедиста он уже был в пути 2 ч), следовательно, это расстояние выражается формулой 6х км, иными словами, ВС=6х.

По условию мы знаем, что пункты А, В и С следуют друг за другом, поэтому АС-ВС=АВ, т.е. АС-ВС=16. Это основа для составления математической модели задачи. Напомним, что АС=4(х+6), ВС=6х; следовательно,

4(х+6)–6х=16.

Второй этап. Работа с составленной математической моделью.

Для решения уравнения придется, во-первых, умножить одночлен 4 на двучлен х+6, получим 4х+24. Во-вторых, придется из двучлена 4х+24 вычесть одночлен 6х:

4х+24-6х=24-2х.

После этих преобразований уравнение принимает более простой вид:

24-2х=16.

Далее имеем:

-2х=16-24,

-2х=-8,

х=4.

Третий этап. Ответ на вопрос задачи.

Мы получили, что х=4, значит, скорость пешехода 4 км/ч. Но нам нужно найти не это, в задаче требуется найти расстояние от В до С. Мы установили, что ВС=6х, значит, ВС=6×4=24.

Ответ: расстояние от В до С равно 24 км.

Задача.

Лодка плыла по течению реки 3 ч 12 мин, а затем против течения 1,5 ч. Найти собственную скорость лодки, если известно, что скорость течения реки 2 км/ч, а всего лодкой пройден путь 41 км.

Решение.

Первый этап. Составление математической модели.

Пусть х км/ч – собственная скорость лодки, тогда по течению она плывет со скоростью (х+2) км/ч, а против течения – со скоростью (х_2) км/ч.

По течению реки лодка плыла 3ч 12 мин. Поскольку скорость выражена в км/ч, это время надо записать в часах. Имеем: 12 мин=12/60 ч=1/5 ч=0,2 ч. Значит, 3 ч 12 мин=3,2 ч. За это время со скоростью (х+2) км/ч лодкой пройден путь 3,2(х+2) км.

Против течения лодка плыла 1,5 ч. За это время со скоростью (х-2) км/ч лодкой пройден путь 1,5(х-2) км.

По условию весь ее путь составил 41 км. Так как он состоит из пути по течению и пути против течения, то получаем:

3,2(х+2)+1,5(х-2)=41.

Это уравнение – математическая модель задачи.

Второй этап. Работа с составленной математической моделью.

Как всегда, на этом этапе думаем только о том, как решить модель – уравнение, а не о том, откуда эта модель взялась. Выполним в левой части уравнения умножение одночлена 3,2 на двучлен х+2, одночлена 1,5 на двучлен х-2, а затем полученные многочлены сложим:

3,2х+6,4+1,5х-3=41;

4,7х+3,4=41;

4,7х=41-3,4;

4,7х=37,6;

х=8.

Третий этап. Ответ на вопрос задачи.

Спрашивается, чему равна собственная скорость лодки, т.е. чему равен х? Но ответ на этот вопрос уже получен: х=8.

Страницы: 1 2

Еще по теме:

Планирование прогулки
2. При планировании прогулки основная задача воспитателя состоит в обеспечении активной, содержательной, разнообразной и интересной для детей деятельности: игры, труда, наблюдений. При планировании содержания прогулки воспитатель предусматривает равномерное чередование спокойной и двигательной деят ...

Роль родного языка и речи в развитии детей старшего дошкольного возраста
Овладение родным (мордовским) языком, развитие речи является одним из самых важных приобретений ребенка в дошкольном детстве и рассматривается в современном дошкольном воспитании как общая основа воспитания и обучения детей. В дошкольном возрасте дети осваивают родной (мордовский) язык и в его эсте ...

Техника безопасности при проведению занятий по плаванию в дошкольных учреждениях
Для правильного осуществления педагогического процесса по плаванию в дошкольных учреждениях необходимо соблюдать следующие правила техники безопасности. Во избежание травм и несчастных случаев на воде необходимо: - допускать к занятиям по плаванию только с разрешения врача; - тщательно следить за с ...

Навигация

Copyright © 2022 - All Rights Reserved - www.goldedu.ru